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Wave formation by time delays in randomly coupled oscillators
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We study the dynamics of randomly coupled oscillators when interactions between oscillators are time
delayed due to the finite and constant speed of coupling signals. Numerical simulations show that the time
delays, proportional to the Euclidean distances between interacting oscillators, can induce near regular waves
in addition to near in-phase synchronous oscillations even though oscillators are randomly coupled. We discuss
the stability conditions for the wave states and the in-phase synchronous states.
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Populations of coupled oscillators have been investigated, KN r
as models of many physical, chemical, and biological sys-6(t) = wy+ — > Ajjsin 0j<t— —'1) -6()],i=21,2,...N,
tems[1-5]. In such models, time delays in interactions have N j=1 v
been generally neglected, but recent studies show that time (1)

delays, comparable to the characteristic time scale of sys-

tems, can affect the dynamics significantly. Various effectavhere6,(t) is the phase oith oscillator at timet, w, is the
such as multistabilitf6-10, amplitude deatljll], cluster- natural frequency of oscillators, amdlis the total number
ing [12], and slow switching[13] have been identified of oscillators. The second term on the right side denotes
through the studies of uniform time delays. the coupling between oscillatbrand other oscillators. Os-

Recently, authors of Ref§14,19 have reported that time cillator i is coupled ton; oscillators with coupling strength

delays can also induce traveling waves. In the framework oK according to a coupling topology described by an adja-
coupled oscillator systems without time delays, travelingcency matrix A. Assuming bidirectional interaction be-
waves are known as an emergent behavior of systems domiween oscillators, we take the element of adjacency matrix
nantly with short-range interactiori§], and not expected in Aj=A;=1, if two oscillatorsi andj interact, andA;=A;;
systems with long-range interactions. Contrary to this, Refs=0 otherwise.
[14,13 have shown that time delay proportional to the Eu- The coupling between oscillatorsaandj is assumed to be
clidean distances between interacting oscillafd can in-  mediated by signal propagating the distangebetween the
duce traveling waves in an array of coupled oscillators evemscillators with constant speed The finite speed of signal
with long-range interactions including all-to-all coupling.  causes the time delay;=r;;/v.

These previous studies of time delays were carried out The oscillators are located on a ring with circumferehce
with regular topology of short-rangg7,15 or long-range The distance;; is unambiguously given by the shorter Eu-
interactions[8—15. In reality, however, such as in neuronal clidean distance between oscillatarand j along the ring
systems, coupling topologies are generally irregytar]. [16]: rij=min{|x;—x|,L—[x;—x|}, wherex; is the position of
Therefore, the studies need to be extended to the case nh oscillator counterclockwise relative to a certain reference
complex coupling topologies. In this direction, a study waspoint on the ring. Note that in contrast to the cases of no time
reported recently on a common stability criterion for variousdelay or uniform time delay, the positions of oscillators are

coupling topologies when the time delays are unifdd8].  important with this type of time delays. Here, we mainly
But for the case of distance-dependent time delays, it reconsider the case of equal spacing between oscillators, in
quires more investigations. which oscillatori is located atx;=(L/N)i. We will briefly

In this paper, as a starting point for studies of more comdiscuss the case of random positioning of oscillators at the
plex coupling topology cases, we address the issue of thend of this paper.
dynamic effect of distance-dependent time delays in a system The random coupling topologies discussed in this paper
of randomlycoupled oscillators. One might expect that ran-are constructed as follows. For each oscilldtowe choose
dom coupling topology would yield random phase relation-randomlyn/2 oscillators which have no coupling with the
ships between oscillators or possibly near in-phase synchr@scillatori yet, and couple them bidirectionally to the oscil-
nous oscillations but not support any regular structuresiatori. As a resultn is just the average number of oscillators
However, the results of our study shows, surprisingly, thakoupled to an oscillaton=N"'=Nn;. In this setting, the
distance-dependent time delays can induce near regulaiaximum distance between coupled oscillatord /€ and
waves even though the oscillators are randomly coupled. thus the maximum time delay would e 2.
We consider the following system of coupled identical \We set the natural frequency,=/10 (the periodT
oscillators with time delays;; /v: =21/ wy=20), the number of oscillatorsl=400, and the cir-
cumference of the ring-=400. Due to the multistabilities
usually observed in time-delayed systefis10,14,15 we
*Email address: kotawo@vortex.kaist.ac.kr need to consider various histories of the systemtfof to
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graphs with more largen=8, depending on the history of
oscillators, the phase of oscillators can show almost linear
change along the rinfFFigs. b) and Xc)]. That is, the ran-
domly coupled oscillators can exhibit almost regular travel-
ing waves with a well-defined wavelength and an oscillating
frequency. This regular wave formation in randomly coupled
oscillators is an unexpected result showing the significant
role of time delays, since it is generally accepted that ran-
domly coupled elements cannot support any regular struc-
tures.

In addition to such states shown in Figgat1(c), for
some range of parameters, randomly coupled oscillators with
time delays can also exhibit near in-phase synchronous
states, depending on the history of oscillators. For example,
the wave state of Fig.(t) and the near in-phase state of Fig.

1(e) are multistable states of the same system with the same
parameters. We also observe multistabilities of an in-phase
state and wave states, and multistabilities of different wave
states. These multistabilities are essentially the same with
those observed in all-to-all coupled oscillators on one-
dimensional spacd14] and regularly coupled oscillators
with finite interaction radius on two-dimensional sp4t8].

To quantify the oscillating behaviors of the system, we
measure the average frequerQyof oscillators defined by

T T —— QE(é)E(l/N)EiNQ and the dispersiomr of frequency dis-

3 tribution defined by o= \{(6-0)2) =\ (L/N)ZN(6,- Q)2
The smallness of the dispersi@nof a state represents that
] the state approaches to a frequency synchronized state where
0 50 100 150 200 250 300 350 400 all the oscillators oscillate with the same frequerieyThe

* states in Figs. (b)-1(e) have relatively small dispersion
compared to the average frequerfey and thus we can say
that the systems exhibit nearly frequency synchronized oscil-
lations. This frequency synchronization was reported also in
the cases of regularly coupled oscillators with distance-
dependent time delay4,15. It is observed that as of
random graph increas¢Big. 1(a) —1(b) — 1(c).], the state
becomes more like that of all-to-all coupling cdség. 1(d)]
[14]; the synchronization frequency) and the relative
phases{¢;} approach to those of all-to-all coupling case.
Therefore, we can regard the random coupling case as an
approximation of all-to-all coupling case.

In the remaining part of the paper, we focus on the wave
forming systems. In numerical simulations, we take the case
of random coupling topology withl=400 andh=20, and the
In the absence of time delays, for any positive values of 3¢ O.f all-to-all coupling V\.’itm.:A'OO'
the coupling strengtlK, this systém typically exhibits in- To find out the synchronization frequen€yand the rela-

' tive phaseq ¢} characterizing the near frequency synchro-

phase synchronous oscillations with synchronization fre- . . :
nized states of randomly coupled oscillators, we write the
guency equal to the natural frequenoy.

In contrast, in the presence of time delays, we observ ear frequency synchronized solution approximately as

that the system shows very different behaviors. Figure i(t)=0t+ ¢, where(l and ¢ are constant. Substitution of
shows the phase of the oscillators as a function of the pos his solution into Eq(1) yields

tion along the ring after almost stationary states are reached.
The unit time delay 1/=0.22 and the coupling strengt
=0.4 are used for all Figs(4-L1(e). The differences in Figs.
1(a)—-1(e) are due to the coupling topology and the history of
oscillators. For random graphs with small average number of
couplings per oscillatom=4, the phases do not show any This equation gives the possible synchronization frequency
explicit structure[Fig. 1(a)]. On the other hand, for random () for the given parameters and relative phags.
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FIG. 1. Phase of the oscillators along the ringy=7/10, N
=L=400, 10=0.22, andK=0.4.x; is the position of theth oscil-
lator. (a) The average number of couplings per oscillator4: no
explicit structure, average frequen€y~0.31, and frequency dis-
persiono~0.05. (b) N=8: a wave state with winding numben
=4, 1=0.295, ando~0.015.(c) n=20: a wave state witm=4,
0=0.2933, andr=4x 107>, (d) All-to-all coupling casen=N-1
=399: a wave state witm=4, 1=0.291 15,0<107. (¢) n=20: a
near in-phase synchronous stafe; 0.0424, andr <1075,

see the stable states. We také(t)=Qiit+dig, |
=1,2,... N for t<0, whereQ,,; is a common frequency
and ¢, is a constant phase for eaghand use various com-
binations ofQ;,;; and{a;}.

N

0= wo+§EAijSin(—Qrij/U+¢j_¢i). (2)
i =1
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For the state of randomly coupled oscillators represented
by relative phase$g;} and a synchronization frequen¢y,
the second term of Eq2) can be regarded as a randomly
sampled value with sampling number from the corre-
sponding term of all-to-all coupled oscillators. This implies
that, for the large enoughs, the states of random coupled
oscillators are approximately equal to those of all-to-all
coupled oscillators. From this fact, we can say that since
wave states are solutions of all-to-all coupled oscillators
[14], randomly coupled oscillators can also have wave states.
Note, however, that the stability of the states of all-to-all
coupled oscillators does not guarantee the stability of corre- 000 008 016 024 032 040 048
sponding states of randomly coupled oscillators.

For near in-phase synchronous oscillations or traveling (b)
waves, the relative phasep, can be written asdg;
=~ 2mm(x;/L) + ¢pg, wherem is a winding number andy is a
constant phase. Equatig®) becomes

N

K Xj = X

Q= wot+ ; E AijSin(_ Qrij/v + 2m7T_JL_I)
i j=1

N
K X; = X;
~wgt— > sin(— Qrilv + 2m77—’—'>. (3
Nj:]- L

Figure 2a) shows the synchronization frequenfyas a
function of unit time delay 1/ and winding numbem for a
fixed coupling strengtiK=0.4. The symbols denote the syn-
chronization frequencies of stable states obtained from nu- FIG. 2. (& Synchronization frequencf as a function of a unit
merical simulations of Eg(1). The curves for synchroniza- ime delay 14 and the winding numbem of a state.wo=/10,
tion frequencyQ are obtained from Eq3), and fit well with ~ L=N=400. andK=0.4. The filled symbols and the open symbols
the synchronization frequencies of randomly coupled oscil €0t the stable states numerically obtained from(Egin ran-
lators(filled symbolg and all-to-all coupled oscillato@pen 4™ coupling cases with=20, and in all-to-all coupling case, re-
symbolg, respectively. As expected, the frequencies of ran-f??lcl_"/vze l%mcgzéeiofiieog:ziggdo fgomcllfr((\q/‘()e.s (\?v)itrﬁZ%Tn;éAa?e
dom coupling case typically coincide with those of all-to-all ;ot Sho\l;vn 7T @.
coupling case for the corresponding stable states. But the ’
stability regions for the random coupling case are smallee=Qr,/v, which is related to the virtual phase difference, is
and within the stability regions of the all-to-all coupling less than a certain valu@,. [15].
case. The stability regions shrink more and more, as the av- Likewise, we want to see the relevance of the virtual
erage numben of couplings per oscillator decreases. Thesephase difference in determining stability of frequency syn-
results confirm the previous observation that random couchronized states. In all-to-all coupled oscillators, the mean

p|ing case approximates all-to-all coupling case more c|ose|}2|e|ayed oscillation of oscillators affecting oscillatoran be

with largern. written as follows:

Let us now discuss the stability of the frequency synchro- 1 N
nized states. It is difficult to determine analytically the sta- R(i,t, L) Pitit) = = N dbjlt-rijh) (4)
bility region for the states of the system with this type of N j=1

time delays, because it requires studying infinitely many ei-

genvalueg14]. In the previous analytical studies of coupled Whlere R anq”(D are the am_plltlude ha_md the phallse of me_islm
oscillators with uniform time delayr, the stability of fre- delayed oscillation, respectively. This mean delayed oscilla-

. . ) tion has the form of the delayed version of the complex order
quency synchronized states—in these cases, in-phase syn-

. . D arameter of all-to-all coupled oscillators without time de-
chronous states—is determined by the synchronization fr ays [1]. To get information of the virtual phase difference
quency(}, time delayr, and coupling strengti [6,9,18. [03_/(0_(1')(. t%/ )] in the f h ph: d stat
Especially, a quantityf)r that can be interpreted as the vir- - 1, Lv)Jin the requency synchronized states, we
tual phase difference between each oscillator and the grou pmputeR exii(6 - )] usmg_l_ntegratmn for the solutions
of delayed oscillators affecting the oscillator has been recog?(t) =t+2mm(x/L). We geti-independent formula
nized as an important factor in analyzing the stability of {(6-®) 1 1 ) A®
in-phase synchronous sta{és9,18. Similarly, in the case of R %™ ~ oA®+2mm | 20 sinA@)e",  (5)
two-dimensional array of coupled oscillators with finite in-
teraction radius, and time delays/v, in-phase synchronous whereA®=(QL/2v—mar)/2 and thisA® is just the virtual
states are shown to be stable only when a quarfiity phase difference.
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FIG. 4. Phase diagram of the model=7/10 andL=N=400.
Below the symbols(neap in-phase oscillations are not observed.
The filled symbols denote the boundary for the random coupling
cases witl=20 and open symbols for all-to-all coupling case.

trast, wave states with winding numbmarare stable only for
the coupling strengttK betweenK(! and K. Near the
| boundary of the ranges, wavelike states with large frequency
5 D dispersiono comparable to the average frequency arise. As
00 02 04 06 08 10 12 14 16 18 we increase the strengtk, the wave solutions with higher
K winding numbem and higher synchronization frequency be-
come stable. The existence of a finite threshold coupling
FIG. 3. (8 Synchronization frequenc as a function of cou-  strengthK, in this system with time delays reflects the de-
pling strengthK and the winding numbem of a state. Unit time  synchronizing effect of time delays.
delay 10=0.16, and other parameters are the same as in Fig: 2. In Fig. 3b), we plot the quantityA®=(QL/2v-mm)/2
Symbols and letters are also used as in Fig. 2. Curves are obtaingg, he states of Fig. @) as a function of coupling strength
from Eq. (3). (b) Quantity A®=(OL/2v=mm)/2 for the states of 1 One of the branches of each solution approaches to zero
(&) as a function of coupling strengt. as the coupling strengtK increases. As mentioned before,
Figure 2b) shows the relevance of this virtual phase dif- the values for the stable states are confined into a region with
ferenceA® in determining the stability of states. We com- [A®|<®.~1. We observe that all the in-phase states satis-
pute the quantitA® for each state depicted Y andmin  fying the condition are stable. But, in the case of wave states,
Fig. 2a). Note that the value increases monotonically alongsatisfying the condition does not guarantee the stability of
the curve for eacim and the values for the stable states arethe states. Therefore, we can conclude that the condition
confined into a region withA®|<®,~1. Frequency syn- |A®|<O,~1 is a sufficient condition for the stability of
chronized states with values outside of this region are obin-phase states and a necessary condition for the stability of
served to be unstable. Therefore, the virtual phase differencgave states.
AO® can be a rough measure to determine the stability of the Figure 4 provides the phase diagram of the model as a
states. The conditiojA®| < ®, summarizes the behaviors of function of unit time delay 1/ and coupling strengtK. If
the stable states of the system shown in Fi@).2with a  the coupling strengttK is below K. which depends on the
fixed m, () decreases as the unit time delay lincreases, unittime delay 19, the system has only wave states. \\kth
and with fixed unit time delay I/, Q) increases asn in- above K., in-phase synchronous states in addition to the
creases. For the sanfg, m increases as b/increases. This wave states are possible. The fact tKatincreases as 1/
condition also implies that the velocity,=QL/2m of the  increases shows the fact that more strong coupling is needed
stable waves is approximately equal to the speeaf the  to overcome the larger desynchronizing effect of the time
coupling signal. As we can see in the following, this condi-delays.
tion, however, is a sufficient one for the stability of in-phase  Finally, we check some details in this analysis. We simu-
states and a necessary one for the stability of wave states.late more sparsely coupled oscillators with-5000 andn
Now, we fix the unit time delay &/ and see the effect of =20 and obtain qualitatively the same results. Locatig
coupling strengtiK. Figure 3a) shows the relationships be- oscillators on the sites randomly selected framAx(>N)
tween the synchronization frequen€y winding numbem,  sites, which are spacefix=0.02 apart, does not alter the
and coupling strengtK when the unit time delay is fixed to results appreciably. We also observe the time-delay induced
1/v=0.16. WherK is smaller than a certail., in this case, regular wave formation in the two-dimensional version of
K.~0.4, only wave solutions are stable. For any couplingthe model. These facts imply that the regular wave formation
strengthk =K, in-phase solutioném=0) are stable. In con- induced by time delay can occur in general settings.
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In summary, we have investigated the dynamics of ranpossible even when the coupling topology can otherwise pre-
domly coupled identical oscillators with time-delayed inter-vent the formation of any regular structures. We have also
actions mediated by signals of finite and constant speed. Weyund that the virtual phase difference between each oscilla-
have found that time delays proportional to the Euclideanor and the group of delayed oscillators affecting the oscilla-

distances between interacting oscillators can induce negg, is crucial for the stability of in-phase states and wave

regular waves in addition to near in-phase oscillations eve.i.q o results may be helpful to understand wave forma-
in randomly coupled oscillators. Formation of such regular

waves in randomly coupled oscillators is striking, since it ha t|9n in neuronal systems with very complex coupling topolo-

been generally accepted that randomly coupled elemen@€S and nonlocal connectiofs].

cannot support any regular structures. We note that tI'_1e Wave \we thank H. Jeong for useful discussions. This work was
formation by time delay does not come from any kind of

mode instabilitieg19]. Rather, it comes from the fact that suppBortgdé)y Grant'_[l NPO' ROl-liga-Oﬁo-Ooosl@Ooa frorg Enai
the time delay is distance dependent and thus can carry geB1® Basic Research Program of the Korea Science and Engi-
metrical information. This makes regular wave formationn€€ring Foundation.
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