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We study the dynamics of randomly coupled oscillators when interactions between oscillators are time
delayed due to the finite and constant speed of coupling signals. Numerical simulations show that the time
delays, proportional to the Euclidean distances between interacting oscillators, can induce near regular waves
in addition to near in-phase synchronous oscillations even though oscillators are randomly coupled. We discuss
the stability conditions for the wave states and the in-phase synchronous states.
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Populations of coupled oscillators have been investigated
as models of many physical, chemical, and biological sys-
tems[1–5]. In such models, time delays in interactions have
been generally neglected, but recent studies show that time
delays, comparable to the characteristic time scale of sys-
tems, can affect the dynamics significantly. Various effects
such as multistability[6–10], amplitude death[11], cluster-
ing [12], and slow switching[13] have been identified
through the studies of uniform time delays.

Recently, authors of Refs.[14,15] have reported that time
delays can also induce traveling waves. In the framework of
coupled oscillator systems without time delays, traveling
waves are known as an emergent behavior of systems domi-
nantly with short-range interactions[5], and not expected in
systems with long-range interactions. Contrary to this, Refs.
[14,15] have shown that time delay proportional to the Eu-
clidean distances between interacting oscillators[16] can in-
duce traveling waves in an array of coupled oscillators even
with long-range interactions including all-to-all coupling.

These previous studies of time delays were carried out
with regular topology of short-range[7,15] or long-range
interactions[8–15]. In reality, however, such as in neuronal
systems, coupling topologies are generally irregular[17].
Therefore, the studies need to be extended to the case of
complex coupling topologies. In this direction, a study was
reported recently on a common stability criterion for various
coupling topologies when the time delays are uniform[18].
But for the case of distance-dependent time delays, it re-
quires more investigations.

In this paper, as a starting point for studies of more com-
plex coupling topology cases, we address the issue of the
dynamic effect of distance-dependent time delays in a system
of randomlycoupled oscillators. One might expect that ran-
dom coupling topology would yield random phase relation-
ships between oscillators or possibly near in-phase synchro-
nous oscillations but not support any regular structures.
However, the results of our study shows, surprisingly, that
distance-dependent time delays can induce near regular
waves even though the oscillators are randomly coupled.

We consider the following system of coupled identical
oscillators with time delaysr ij /v:

u̇istd = v0 +
K

ni
o
j=1

N

AijsinFu jSt −
r ij

v
D − uistdG , i = 1,2, . . . ,N,

s1d

whereuistd is the phase ofith oscillator at timet, v0 is the
natural frequency of oscillators, andN is the total number
of oscillators. The second term on the right side denotes
the coupling between oscillatori and other oscillators. Os-
cillator i is coupled toni oscillators with coupling strength
K according to a coupling topology described by an adja-
cency matrix A. Assuming bidirectional interaction be-
tween oscillators, we take the element of adjacency matrix
Aij =Aji =1, if two oscillatorsi and j interact, andAij =Aji
=0 otherwise.

The coupling between oscillatorsi and j is assumed to be
mediated by signal propagating the distancer ij between the
oscillators with constant speedv. The finite speed of signal
causes the time delayti j =r ij /v.

The oscillators are located on a ring with circumferenceL.
The distancer ij is unambiguously given by the shorter Eu-
clidean distance between oscillatorsi and j along the ring
[16]: r ij =minhuxj −xiu ,L− uxj −xiuj, wherexi is the position of
ith oscillator counterclockwise relative to a certain reference
point on the ring. Note that in contrast to the cases of no time
delay or uniform time delay, the positions of oscillators are
important with this type of time delays. Here, we mainly
consider the case of equal spacing between oscillators, in
which oscillator i is located atxi =sL /Ndi. We will briefly
discuss the case of random positioning of oscillators at the
end of this paper.

The random coupling topologies discussed in this paper
are constructed as follows. For each oscillatori, we choose
randomly n̄/2 oscillators which have no coupling with the
oscillator i yet, and couple them bidirectionally to the oscil-
lator i. As a result,n̄ is just the average number of oscillators
coupled to an oscillator;n̄=N−1oi=1

N ni. In this setting, the
maximum distance between coupled oscillators isL /2 and
thus the maximum time delay would beL /2v.

We set the natural frequencyv0=p /10 (the periodT
=2p /v0=20), the number of oscillatorsN=400, and the cir-
cumference of the ringL=400. Due to the multistabilities
usually observed in time-delayed systems[6–10,14,15], we
need to consider various histories of the system fort,0 to*Email address: kotawo@vortex.kaist.ac.kr
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see the stable states. We takeuistd=Vinitt+fi0, i
=1,2, . . . ,N for t,0, whereVinit is a common frequency
andfi0 is a constant phase for eachi, and use various com-
binations ofVinit and hfi0j.

In the absence of time delays, for any positive values of
the coupling strengthK, this system typically exhibits in-
phase synchronous oscillations with synchronization fre-
quency equal to the natural frequencyv0.

In contrast, in the presence of time delays, we observe
that the system shows very different behaviors. Figure 1
shows the phase of the oscillators as a function of the posi-
tion along the ring after almost stationary states are reached.
The unit time delay 1/v=0.22 and the coupling strengthK
=0.4 are used for all Figs. 1(a)–1(e). The differences in Figs.
1(a)–1(e) are due to the coupling topology and the history of
oscillators. For random graphs with small average number of
couplings per oscillator,n̄ø4, the phases do not show any
explicit structure[Fig. 1(a)]. On the other hand, for random

graphs with more largern̄ù8, depending on the history of
oscillators, the phase of oscillators can show almost linear
change along the ring[Figs. 1(b) and 1(c)]. That is, the ran-
domly coupled oscillators can exhibit almost regular travel-
ing waves with a well-defined wavelength and an oscillating
frequency. This regular wave formation in randomly coupled
oscillators is an unexpected result showing the significant
role of time delays, since it is generally accepted that ran-
domly coupled elements cannot support any regular struc-
tures.

In addition to such states shown in Figs. 1(a)–1(c), for
some range of parameters, randomly coupled oscillators with
time delays can also exhibit near in-phase synchronous
states, depending on the history of oscillators. For example,
the wave state of Fig. 1(c) and the near in-phase state of Fig.
1(e) are multistable states of the same system with the same
parameters. We also observe multistabilities of an in-phase
state and wave states, and multistabilities of different wave
states. These multistabilities are essentially the same with
those observed in all-to-all coupled oscillators on one-
dimensional space[14] and regularly coupled oscillators
with finite interaction radius on two-dimensional space[15].

To quantify the oscillating behaviors of the system, we
measure the average frequencyV of oscillators defined by

V;ku̇l;s1/Ndoi
Nu̇i and the dispersions of frequency dis-

tribution defined by s;Îksu̇−Vd2l=Îs1/Ndoi
Nsu̇i −Vd2.

The smallness of the dispersions of a state represents that
the state approaches to a frequency synchronized state where
all the oscillators oscillate with the same frequencyV. The
states in Figs. 1(b)–1(e) have relatively small dispersions
compared to the average frequencyV, and thus we can say
that the systems exhibit nearly frequency synchronized oscil-
lations. This frequency synchronization was reported also in
the cases of regularly coupled oscillators with distance-
dependent time delays[14,15]. It is observed that asn̄ of
random graph increases[Fig. 1(a) →1(b) → 1(c).], the state
becomes more like that of all-to-all coupling case[Fig. 1(d)]
[14]; the synchronization frequencyV and the relative
phaseshfij approach to those of all-to-all coupling case.
Therefore, we can regard the random coupling case as an
approximation of all-to-all coupling case.

In the remaining part of the paper, we focus on the wave
forming systems. In numerical simulations, we take the case
of random coupling topology withN=400 andn̄=20, and the
case of all-to-all coupling withN=400.

To find out the synchronization frequencyV and the rela-
tive phaseshfij characterizing the near frequency synchro-
nized states of randomly coupled oscillators, we write the
near frequency synchronized solution approximately as
uistd=Vt+fi, whereV and fi are constant. Substitution of
this solution into Eq.(1) yields

V < v0 +
K

ni
o
j=1

N

Aijsins− Vr ij /v + f j − fid. s2d

This equation gives the possible synchronization frequency
V for the given parameters and relative phaseshfij.

FIG. 1. Phase of the oscillators along the ring.v0=p /10, N
=L=400, 1/v=0.22, andK=0.4. xi is the position of theith oscil-
lator. (a) The average number of couplings per oscillator,n̄=4: no
explicit structure, average frequencyV<0.31, and frequency dis-
persions<0.05. (b) n̄=8: a wave state with winding numberm
=4, V<0.295, ands<0.015. (c) n̄=20: a wave state withm=4,
V=0.2933, ands=4310−5. (d) All-to-all coupling case,n̄=N−1
=399: a wave state withm=4, V=0.291 15,s,10−5. (e) n̄=20: a
near in-phase synchronous state,V=0.0424, ands,10−5.
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For the state of randomly coupled oscillators represented
by relative phaseshfij and a synchronization frequencyV,
the second term of Eq.(2) can be regarded as a randomly
sampled value with sampling numberni from the corre-
sponding term of all-to-all coupled oscillators. This implies
that, for the large enoughnis, the states of random coupled
oscillators are approximately equal to those of all-to-all
coupled oscillators. From this fact, we can say that since
wave states are solutions of all-to-all coupled oscillators
[14], randomly coupled oscillators can also have wave states.
Note, however, that the stability of the states of all-to-all
coupled oscillators does not guarantee the stability of corre-
sponding states of randomly coupled oscillators.

For near in-phase synchronous oscillations or traveling
waves, the relative phasefi can be written asfi
<2mpsxi /Ld+f0, wherem is a winding number andf0 is a
constant phase. Equation(2) becomes

V < v0 +
K

ni
o
j=1

N

AijsinS− Vr ij /v + 2mp
xj − xi

L
D

<v0 +
K

N
o
j=1

N

sinS− Vr ij /v + 2mp
xj − xi

L
D . s3d

Figure 2(a) shows the synchronization frequencyV as a
function of unit time delay 1/v and winding numberm for a
fixed coupling strengthK=0.4. The symbols denote the syn-
chronization frequencies of stable states obtained from nu-
merical simulations of Eq.(1). The curves for synchroniza-
tion frequencyV are obtained from Eq.(3), and fit well with
the synchronization frequencies of randomly coupled oscil-
lators(filled symbols) and all-to-all coupled oscillators(open
symbols), respectively. As expected, the frequencies of ran-
dom coupling case typically coincide with those of all-to-all
coupling case for the corresponding stable states. But the
stability regions for the random coupling case are smaller
and within the stability regions of the all-to-all coupling
case. The stability regions shrink more and more, as the av-
erage numbern̄ of couplings per oscillator decreases. These
results confirm the previous observation that random cou-
pling case approximates all-to-all coupling case more closely
with larger n̄.

Let us now discuss the stability of the frequency synchro-
nized states. It is difficult to determine analytically the sta-
bility region for the states of the system with this type of
time delays, because it requires studying infinitely many ei-
genvalues[14]. In the previous analytical studies of coupled
oscillators with uniform time delayt, the stability of fre-
quency synchronized states—in these cases, in-phase syn-
chronous states—is determined by the synchronization fre-
quencyV, time delayt, and coupling strengthK [6,9,18].
Especially, a quantityVt that can be interpreted as the vir-
tual phase difference between each oscillator and the group
of delayed oscillators affecting the oscillator has been recog-
nized as an important factor in analyzing the stability of
in-phase synchronous states[6,9,18]. Similarly, in the case of
two-dimensional array of coupled oscillators with finite in-
teraction radiusr0 and time delaysr /v, in-phase synchronous
states are shown to be stable only when a quantityQ

;Vr0/v, which is related to the virtual phase difference, is
less than a certain valueQc [15].

Likewise, we want to see the relevance of the virtual
phase difference in determining stability of frequency syn-
chronized states. In all-to-all coupled oscillators, the mean
delayed oscillation of oscillators affecting oscillatori can be
written as follows:

Rsi,t,1/vdeiFsi,t,1/vd ;
1

N
o
j=1

N

eiu jst−ri j /vd, s4d

where R and F are the amplitude and the phase of mean
delayed oscillation, respectively. This mean delayed oscilla-
tion has the form of the delayed version of the complex order
parameter of all-to-all coupled oscillators without time de-
lays f1g. To get information of the virtual phase difference
fuistd−Fsi ,t ,1 /vdg in the frequency synchronized states, we
computeR expfisui −Fdg using integration for the solutions
uistd=Vt+2mpsxi /Ld. We geti-independent formula

R eisui−Fd < F 1

2DQ + 2mp
+

1

2DQ
GsinsDQdeiDQ, s5d

whereDQ=sVL /2v−mpd /2 and thisDQ is just the virtual
phase difference.

FIG. 2. (a) Synchronization frequencyV as a function of a unit
time delay 1/v and the winding numberm of a state.v0=p /10,
L=N=400, andK=0.4. The filled symbols and the open symbols
denote the stable states numerically obtained from Eq.(1) in ran-
dom coupling cases withn̄=20, and in all-to-all coupling case, re-
spectively. Curves are obtained from Eq.(3). (b) Quantity DQ
=sVL /2v−mpd /2 for the states of(a). Curves withuDQu.5 are
not shown.
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Figure 2(b) shows the relevance of this virtual phase dif-
ferenceDQ in determining the stability of states. We com-
pute the quantityDQ for each state depicted byV andm in
Fig. 2(a). Note that the value increases monotonically along
the curve for eachm and the values for the stable states are
confined into a region withuDQu,Qc<1. Frequency syn-
chronized states with values outside of this region are ob-
served to be unstable. Therefore, the virtual phase difference
DQ can be a rough measure to determine the stability of the
states. The conditionuDQu,Qc summarizes the behaviors of
the stable states of the system shown in Fig. 2(a). With a
fixed m, V decreases as the unit time delay 1/v increases,
and with fixed unit time delay 1/v, V increases asm in-
creases. For the sameV, m increases as 1/v increases. This
condition also implies that the velocityvp=VL /2mp of the
stable waves is approximately equal to the speedv of the
coupling signal. As we can see in the following, this condi-
tion, however, is a sufficient one for the stability of in-phase
states and a necessary one for the stability of wave states.

Now, we fix the unit time delay 1/v and see the effect of
coupling strengthK. Figure 3(a) shows the relationships be-
tween the synchronization frequencyV, winding numberm,
and coupling strengthK when the unit time delay is fixed to
1/v=0.16. WhenK is smaller than a certainKc, in this case,
Kc,0.4, only wave solutions are stable. For any coupling
strengthKùKc, in-phase solutionssm=0d are stable. In con-

trast, wave states with winding numberm are stable only for
the coupling strengthK betweenKm

c1 and Km
c2. Near the

boundary of the ranges, wavelike states with large frequency
dispersions comparable to the average frequency arise. As
we increase the strengthK, the wave solutions with higher
winding numberm and higher synchronization frequency be-
come stable. The existence of a finite threshold coupling
strengthKc in this system with time delays reflects the de-
synchronizing effect of time delays.

In Fig. 3(b), we plot the quantityDQ=sVL /2v−mpd /2
for the states of Fig. 3(a) as a function of coupling strength
K. One of the branches of each solution approaches to zero
as the coupling strengthK increases. As mentioned before,
the values for the stable states are confined into a region with
uDQu,Qc<1. We observe that all the in-phase states satis-
fying the condition are stable. But, in the case of wave states,
satisfying the condition does not guarantee the stability of
the states. Therefore, we can conclude that the condition
uDQu,Qc<1 is a sufficient condition for the stability of
in-phase states and a necessary condition for the stability of
wave states.

Figure 4 provides the phase diagram of the model as a
function of unit time delay 1/v and coupling strengthK. If
the coupling strengthK is below Kc which depends on the
unit time delay 1/v, the system has only wave states. WithK
above Kc, in-phase synchronous states in addition to the
wave states are possible. The fact thatKc increases as 1/v
increases shows the fact that more strong coupling is needed
to overcome the larger desynchronizing effect of the time
delays.

Finally, we check some details in this analysis. We simu-
late more sparsely coupled oscillators withN=5000 andn̄
=20 and obtain qualitatively the same results. LocatingN
oscillators on the sites randomly selected fromL /Dxs@Nd
sites, which are spacedDx=0.02 apart, does not alter the
results appreciably. We also observe the time-delay induced
regular wave formation in the two-dimensional version of
the model. These facts imply that the regular wave formation
induced by time delay can occur in general settings.

FIG. 3. (a) Synchronization frequencyV as a function of cou-
pling strengthK and the winding numberm of a state. Unit time
delay 1/v=0.16, and other parameters are the same as in Fig. 2.
Symbols and letters are also used as in Fig. 2. Curves are obtained
from Eq. (3). (b) Quantity DQ=sVL /2v−mpd /2 for the states of
(a) as a function of coupling strengthK.

FIG. 4. Phase diagram of the model.v0=p /10 andL=N=400.
Below the symbols,(near) in-phase oscillations are not observed.
The filled symbols denote the boundary for the random coupling
cases withn̄=20 and open symbols for all-to-all coupling case.
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In summary, we have investigated the dynamics of ran-
domly coupled identical oscillators with time-delayed inter-
actions mediated by signals of finite and constant speed. We
have found that time delays proportional to the Euclidean
distances between interacting oscillators can induce near
regular waves in addition to near in-phase oscillations even
in randomly coupled oscillators. Formation of such regular
waves in randomly coupled oscillators is striking, since it has
been generally accepted that randomly coupled elements
cannot support any regular structures. We note that the wave
formation by time delay does not come from any kind of
mode instabilities[19]. Rather, it comes from the fact that
the time delay is distance dependent and thus can carry geo-
metrical information. This makes regular wave formation

possible even when the coupling topology can otherwise pre-
vent the formation of any regular structures. We have also
found that the virtual phase difference between each oscilla-
tor and the group of delayed oscillators affecting the oscilla-
tor is crucial for the stability of in-phase states and wave
states. Our results may be helpful to understand wave forma-
tion in neuronal systems with very complex coupling topolo-
gies and nonlocal connections[5].
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